
Bignum Arithmetic

Felix von Leitner
CCC Berlin

felix-bignum@fefe.de

December 2006

Abstract
Everyone has used encryption software before; PGP, SSL, IPsec, ...

most of these use public key cryptography, which involves working with
large numbers (bignums, 1024 bits and up). But how do you actually
work with numbers like that?

Implementing Bignum Arithmetic



Bignum Arithmetic

Agenda

1. Representing big numbers

2. Adding big numbers

3. Multiplying big numbers

4. Modulo operations on big numbers

Implementing Bignum Arithmetic 1



Bignum Arithmetic

Representing bignums

1. Two’s complement?
Does not work well with bignums.

2. COBOL style decimal (0-9 in each nibble)?
Works. Does not scale, though.

3. Absolute number plus sign bit!

Implementing Bignum Arithmetic 2



Bignum Arithmetic

Representing bignums: OpenSSL

struct bignum_st
{
BN_ULONG *d; /* ptr to array of ’BN_BITS2’ bit chunks. */
int top; /* Index of last used d +1. */
/* The next are internal book keeping for bn_expand. */
int dmax; /* Size of the d array. */
int neg; /* one if the number is negative */
int flags;
};

BN_ULONG is basically a size_t, i.e. as wide as a register.

Implementing Bignum Arithmetic 3



Bignum Arithmetic

Representing bignums: gcrypt (gnutls)

struct gcry_mpi {
int alloced; /* array size (# of allocated limbs) */
int nlimbs; /* number of valid limbs */
int sign; /* indicates a negative number and is used for

* opaque MPIs to store the length */
unsigned flags; /* bit 0: array in secure memory space */

/* bit 2: pointer to some m_alloced data */
mpi_limb_t *d; /* array with the limbs */

};

Again, mpi_limb_t == size_t.

Implementing Bignum Arithmetic 4



Bignum Arithmetic

Representing bignums: gmp

typedef struct
{

int _mp_alloc; /* Number of *limbs* allocated and pointed
to by the _mp_d field. */

int _mp_size; /* abs(_mp_size) is the number of limbs the
last field points to. If _mp_size is
negative this is a negative number. */

mp_limb_t *_mp_d; /* Pointer to the limbs. */
} __mpz_struct;

Again, mp_limb_t == size_t.

Implementing Bignum Arithmetic 5



Bignum Arithmetic

Adding big numbers

• sizeof(result) = max(sizeof(src1), sizeof(src2)) + 1

• CPUs have add with carry

• C exposes that through casting to the next bigger integer type

• However, there might not be one. gcc on amd64 has __int128.

for (l=0, i=0; i<m; ++i) {
l += (unsigned long long)src1[i] + src2[i];
dest[i] = l;
l >>= 32;

}

Implementing Bignum Arithmetic 6



Bignum Arithmetic

Adding big numbers - issues

• Linear (not parallelizable)

• Could do addition, save carries, do second pass for carry adjustment

• Turns out: not worth it

• Bottleneck is memory access, not addition

• Pentium 4: 1/2 cycle per add, but 8 cycles per adc

Implementing Bignum Arithmetic 7



Bignum Arithmetic

Subtracting big numbers

• Same as addition, basically

• First settle sign bits, might end up as addition

• If result changes sign, swap operands and xor sign bit

Implementing Bignum Arithmetic 8



Bignum Arithmetic

Multiplication

• sizeof(result) = sizeof(a) + sizeof(b)

• ”School method”

a b c * d e f
---------------------

cd ce cf
bd be bf

ad ae af
---------------------

[...] cf

Implementing Bignum Arithmetic 9



Bignum Arithmetic

Multiplication - issues

• Results of limb multiplications have double width

• Cannot use double width number to add two and store carry!

• Costly: n2 muls, 3 ∗ n2 adds

• Interestingly, the adds are free (hidden by mul latency).
Welcome to 21st century multiscalar CPUs!
This also means that we can’t speed this up with SIMD.

Implementing Bignum Arithmetic 10



Bignum Arithmetic

Multiplication - issues

unsigned long long temp[n*n];
for (i=0; i<n; ++i)

for (j=0; j<n; ++j)
temp[j*n+i]=(acc)a[i]*b[j];

This code takes over 7000 cycles for two random 1024 bit numbers, and it
does neither addition, nor carry calculation, nor does it write the actual result.

The whole OpenSSL multiplication routine takes less than 5000 cycles.

So how do they do it?

Implementing Bignum Arithmetic 11



Bignum Arithmetic

Modern Computer Architecture

• Keep stuff in registers, not memory
Potential loss: 200+ cycles

• Mispredicted conditional jumps are expensive
Potential loss: 20 cycles on P4, less for other CPUs

• Multiplication is expensive, use shift if you can
Potential loss: 8 cycles

Only important optimization: minimize memory accesses.
No temp arrays or variables! Read each bignum once, write result once.

Implementing Bignum Arithmetic 12



Bignum Arithmetic

Multiplication, next attempt

• Do multiply and carry adjustment for each row

• For first row, write directly to result. For other rows, add to result

• Still unnecessary memory accesses, but at least no temp array

• This is my current version: 1414 amd64 cycles vs 1509 for openssl

Implementing Bignum Arithmetic 13



Bignum Arithmetic

Other Ideas

• Need lg(n) bits to hold carry

• Reduce word length so that accumulator can hold product plus carry

• Pro: Needs less additions in inner loop

• Con: Loop needs to run more often

• Might still be worth it to get better parallelism

• Haven’t actually tried this

Implementing Bignum Arithmetic 14



Bignum Arithmetic

Comba Multiplication

• Like school method, but go by column

• Do rightmost column first, write directy to result

• Should be even faster, but isn’t on my Athlon 64

• Speed record: tomfastmath with comba: 948 amd64 cycles

• But that is massively unrolled, and special cased; 300k code just for mul

• Can (with tricks) be done just within x86 registers when unrolled

Implementing Bignum Arithmetic 15



Bignum Arithmetic

Karatsuba Multiplication

• Split numbers in high and low part (reachable via shifting)

• Normal ”long” multiplication takes 4 muls for the four parts

• Clever arithmetic trades one multiplication for several adds and subs

• Great in academic paper, slower in practice (until 2048+ bits)

(a + b10n)(c + d10n) = ac + ((a + b)(c + d)− ac− bd) 10n + bd102n

Implementing Bignum Arithmetic 16



Bignum Arithmetic

Toom-Cook Multiplication

• Generalizes Karatsuba to n-part split

• Even harder to implement

• Looks even better in academic papers

• Is even slower in practice (4096+ bits)

Implementing Bignum Arithmetic 17



Bignum Arithmetic

FFT Multiplication (Schönhage-Strassen)

• Choose smaller limb size

• Squint eyes, be under the influence of certain drugs

• Suddenly multiplication looks like convolution :-)

• Compute FFT for a and b, multiply pairwise, compute inverse FFT

• Looks even greater in academic paper

• Is even less worth it in practice (used for calculating π to 1e6 digits)

Implementing Bignum Arithmetic 18



Bignum Arithmetic

Some Benchmarks: 64-bit mode

These are cycle counts on Athlon 64 and Core 2 CPUs in 64-bit mode:

add (a64) mul / comba add (c2) mul
My code 83 1414 / 1759 336 2100 / 1704
gmp 111 1512 324 1752
OpenSSL 153 1509 216 1680
tomsfastmath 127 948 204 1344
gcrypt 188 6375 240 5892

Note: 16 limbs! The add step in the mul alone takes 16 times the add cycles,
so we can also view this as ”the muls are free”.

Implementing Bignum Arithmetic 19



Bignum Arithmetic

Some Benchmarks: 32-bit mode

add (a64) mul / comba add (c2) mul
My code 156 4838 / 6716 360 6708 / 6900
gmp 123 3845 204 4776
OpenSSL 156 3996 276 5184
tomsfastmath 519 3067 540 4584
gcrypt 146 7850 228 9444

Implementing Bignum Arithmetic 20



Bignum Arithmetic

Some Benchmarks: ASM vs various C Compilers

gcc 64 ASM 64 gcc 32 icc 32 sun c 32 ASM 32
add (Athlon 64) 132 84 509 240 660 140
mul (Athlon 64) 2512 1414 11132 7313 13147 4780
comba (Athlon 64) 2425 1465 16489 11539 11812 6181
add (Core 2) 204 336 540 288 372 360
mul (Core 2) 2496 2112 10128 7896 9180 6744
comba (Core 2) 2604 1752 17316 10812 10104 6852
add (P4) 956 400 544 436
mul (P4) 33088 18892 26076 26112
comba (P4) 38316 24484 22492 21552

Implementing Bignum Arithmetic 21



Bignum Arithmetic

Exponentiation

• temp = number to be squared

• result = 1

• For each bit in exponent: temp *= temp

• If i’th bit in exponent is set, result *= temp

Problem: HUGE result. In crypto, we don’t actually want the result; we want
the result modulo some prime.

Note: At least half of the multiplications are squaring.

Implementing Bignum Arithmetic 22



Bignum Arithmetic

Squaring

a b c * a b c
---------------------

ca cb cc
ba bb bc

aa ab ac
---------------------

[...] cc

Note that ca = ac; we can save a third of the multiplications. Note however
that the additional bookkeeping may make the benefit disappear. Also, we still
need to do the adds that were previously hidden in the latency of the muls we
just saved.

Implementing Bignum Arithmetic 23



Bignum Arithmetic

Modulo Arithmetic

• Public key crypto works on residue classes

• We have to calculate remainder after divided by some large prime number

• mul latency: 12 cycles on Intel 64-bit, 5 cycles on AMD 64-bit

• div latency: 161 cycles on Intel 64-bit, 71 cycles on AMD 64-bit

• mul is pipelined (on Intel only on 32-bit), div is not

• Division is horribly slow and must be avoided if at all possible

Implementing Bignum Arithmetic 24



Bignum Arithmetic

Modulo Arithmetic

• First: reduce operands modulo prime

• For addition, if result > prime, subtract prime

• For multiplication, some trickery is involved

Implementing Bignum Arithmetic 25



Bignum Arithmetic

Multiplication modulo r

• Reduce all intermediate values

• Problem: shifting by a column was free previously, now isn’t

• Still very inefficient

Implementing Bignum Arithmetic 26



Bignum Arithmetic

Montgomery Multiplication

• dest=0

• For each bit in a (starting at lowest bit):

1. if bit is set, dest += b
2. if lowest bit in dest is set, dest += r
3. dest >>= 1

• if dest > r then dest -= dest

• Result: ab2n mod r (n is the number of bits in a)

Implementing Bignum Arithmetic 27



Bignum Arithmetic

Montgomery Multiplication

• Only works if 2n and r are coprime (which is true for crypto)

• Get actual result by multiplying with 2n mod r

• Alternative, multiply by 2n mod r (precomputed value) before and by
2−n mod r (other precomputed value) after the multiplication

• For exponentiation, you only do the pre- and post-multiply once

Implementing Bignum Arithmetic 28


